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Introduction



• For given input f ∈ F[x1, . . . , xn], goal is to relate “complexity” of
its factors and possibly output it.

• How is the input given (model of computation)? What is the
notion of “complexity” we are talking about?

• We will be talking about different algebraic models of
computation throughout. One of the most important is the
“circuit” model.
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Arithmetic Circuits

· · ·x2x11 xn

+ + +· · ·

×

(1+ x1) . . . (1+ xn)

• size= # of nodes + # of edges = 5n+ 2

• # of monomials = 2n
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Notation

• Notation : x = (x1, . . . , xn), [n] = {1, . . . ,n}

• deg(f) := total degree of f
Example:

f = x2y+ x3y2 + xy+ 4

Here deg(f) = 5

• size(f) denotes the minimum size of circuit computing f

• f≤d denotes degree of f upto d i.e.

f≤d = f mod ⟨x⟩d+1
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Factorization in Circuit Models

Question: Given f ∈ F[x] of size(f) ≤ s, deg(f) = d, what can we say

about the size of its factors?

• (Kaltofen’87, Bürgisser’00, KSS’14, Oliveira’16) Any factor has
poly(s,d)-size circuit

• There is a randomized poly(s,d)-time algorithm that can output

irreducible factor

In other words, VP is uniformly closed under factoring!
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Exponential degree circuit

• It is natural to ask whether we can allow degree to be 2O(s) and
claim whether the size of its factors are still poly(s).

• It is known that “all” factors of polynomial of size s can’t have
small circuit.

• Consider

fn = x2n − 1 =
2n

∏
j=1

(x− ζ j)

where ζ denotes 2n-th root of unity.

• (LS’78) fn has O(n) size circuit but there are factors which has
size ≥ Ω( 2

n/2
√
n ).
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• The previous example is only about exponential degree factor

• Let g = ∏
i∈S

(x− ζ i) where S ⊂ [2n] with |S| = nO(1)

• Trivially g has poly(n) size circuit!
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Factor Conjecture

Factor Conjecture
If f has s size circuit and g | f with deg(g) = d, then g has poly(s,d)
size circuit.

• (Kaltofen’87) If f = ge , size(f) = s, deg(g) = d; then
size(g) ≤ poly(s,d). This is true over character 0 or field of
large characteristic.

• What can we say about factors of f = ge11 g
e2
2 where size(f) = s,

deg(g1), deg(g2) ≤ d?
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Relating Squarefree part to Complexity

• For f = ∏i f
ei
i , define radical to be

rad(f) = ∏
i
fi

• Assumption: F is algebraically closed and characteristic=0

Theorem 1
Any factor g of a polynomial f computed by a circuit of size s has
size poly(s,deg(rad(f)).

• The degree of square-free part is polynomially bounded =⇒
size “any” factor is!(and factor conjecture is true in this case!)

• This subsumes both the results of Kaltofen
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Factoring Reduces to Root
Approximation



Finding linear factor

• Suppose f(x, y) = (y− g(x)) · u(x, y) where y− g ∤ u. Can we find
g?

This is root finding as f(x,g) = 0.

• (Newton Iteration) Suppose we want to find “good enough“
approximation of x such that f(x) = 0. Assume f′(x) ̸= 0. Idea is
the following:
1. guess a good starting point x0
2. calculate xn+1 = xn − f(xn)

f′(xn)

• Can we do similar thing to find g? If yes, what is the notion of

approximation ? What is the starting point?

10
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Finding linear factor Continued

• Initial starting point y0 = µ where µ := g(0)

• Define yt+1 = yt − f(x,yt)
f′(x,yt)

. Can we say that yt is an approximation
of g?

• If f′(x, yt) is invertible, then one can show that

yt ≡ g mod ⟨x⟩2t =⇒ yt+1 ≡ g mod ⟨x⟩2t+1

• f′(x, yt) is invertible ⇐⇒ f′(x, yt)
∣∣∣∣
x=0

̸= 0 ⇐⇒ f′(0, µ) ̸= 0

• If f(0, µ) = 0 and f′(0, µ) ̸= 0. Then, one can find g by
calculating ylogd+1 where deg(g) = d.

11
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• What if f = (y− g1)(y− g2) but g1(0) = g2(0)?

1. Pick α ∈ Fn such that g1(α) ̸= g2(α)

2. f(x+ α, y) = (y− g1(x+ α)) (y− g2(x+ α))

3. when we put x = 0 we will get (y− g1(α)) (y− g2(α))

4. apply Newton Iteration (NI)

• What if f = (y− g)e · u ? We can differentiate e− 1 times and
apply NI on f(e−1).

• What about f(x, y) =
(
yk + ck−1(x)yk−1 + . . . + c0(x)

)
· u where

k > 1?

12
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Non linear factor

We would like to relate non-linear factors to linear factors so that we
can apply NI.

• Consider f(x, z) = (z2 − x3) · u(x, z) = (z− x3/2)(z+ x3/2) · u

• One can assume that z2 − x3 ∤ u as otherwise we can
differentiate appropriately many times and work with the new
polynomial

• f(x+ 1, z) = (z2 − (x+ 1)3) · u(x+ 1, z) =(
z− (x+ 1)3/2

) (
z+ (x+ 1)3/2

)
· u(x+ 1, z)

• g := (x+ 1)3/2 = 1+ 3
2x+ (

3
2
2)x

2 + (
3
2
3)x

3 + . . .

• So g is a root of f(x+ 1, z) ∈ F[[x]][z] as f(x+ 1,g) = 0

• Note that z2 − (x+ 1)3 = (z− g≤3)(z+ g≤3) mod x4
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Power Series Split Theorem

Power Series Split Theorem (DSS’18)
τ : xi 7→ xi + αiy+ βi, where αi, βi ∈r F, deg(rad(f)) = d0,

f(τx) = k · ∏
i∈[d0]

(y− gi)γi

where k ∈ F×,gi ∈ F[[x]]

• f(x1 + α1y, . . . , xn + αny) makes f monic in y
• For irreducible h, one can show that

h(τx) = c ·
deg(h)

∏
i=1

(y− gi)

14
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Factoring reduces to Root Approximation

Notation : g≤k ≡ g mod ⟨x⟩k+1.

• Suppose h | f. Apply τ on f

• f(τx) = k · ∏(y− gi)ei

• F[[x]][y] is UFD =⇒ h(τx) = c · ∏(y− gi)bi for bi ≤ ei

• If deg(h) = dh =⇒ deg(h(τx)) = dh

• Hence h(τx) = h(τx) mod ⟨x⟩dh+1

• h(τx) = c · ∏(y− g≤dhi )bi mod ⟨x⟩dh+1

• Apply τ−1 on h(τx) to get back h(x).

15
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Simultaneous Root
Approximation (allRootsNI)



Are we done?

• We know factoring reduces to root approximation.

• We know standard newton iteration would give us
approximation.

• Are we done?

• If f = (y− g)e · u, to find g, we have to differentiate e− 1-times
(wrt y). What is the size of f(e−1)?

16
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Derivative Computation

f computed by size s circuit =⇒ ∂kf
∂yk can be computed by O(k

2s)
size circuit

Proof Idea.
Compute inductively from bottom to top calculating upto k-th
derivative i.e. at some node calculating u in the actual circuit, we
keep track of (u,u(1), . . . ,u(k)) instead!

17
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+ w

u v

w(i) = u(i) + v(i)

18



× w

u v

w(i) =
i

∑
µ=0

(
i
µ

)
u(i−µ)v(µ)

18



Can we do better for derivative computing?

Observation: size(f′) = O(s) where size(f) = s

• Can one show log dependency on k in the size of the derivative
circuit?

• If ∂kf
∂yk can be computed by poly(log k, s) =⇒ permanent can be

computed by a polynomial size circuit

19
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Modified Newton Iteration : Does this help?

• Can we avoid exponential many derivatives?

• One can show that f = (y− g)e · u, then if we define

yt+1 = yt − e f(yt)f′(yt)
and yt ≡ g mod ⟨x⟩2t

Then
yt+1 = g mod ⟨x⟩2t+1

• Does this help? No!
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• Recall to recover a factor, it is enough to calculate
approximation upto its degree

• Suppose h | f and y− g | h(τx) for some g ∈ F[[x]]

• One has to calculate g≤dh . Calculate ylogdh+1 by the modified
iteration

yt+1 = yt − e f(yt)f′(yt)

• Compute the whole thing as a circuit with “division” gate allowed

• Push the division gate and the top and try to remove division at
the end

21
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• How to eliminate only one division gate at the top?

÷

A B

• We will be spared with A
B and we have to calculate

A
B mod ⟨x⟩dh+1 where B is not invertible.

• We don’t know how to calculate this!

22
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Strassen’s Division Elimination

• Can we find A
B mod ⟨x⟩d+1 if B is invertible?

where size(A), size(B) ≤ s

• A
B mod ⟨x⟩d+1 has size O(sdO(1))

23
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Bounding size of irreducible polynomials are enough

• Suppose we have size s circuit f = ∏i f
ai
i and d0 = deg(rad(f))

• Theorem 1 says that any g of f has poly(s,d0) size circuit

• it is enough to show that each fi has poly(s,d0) size circuit :
1. ai ≤ exp(s)

2. g | f =⇒ g = ∏ fbii

3. fi has poly(s,d0) size and bi ≤ exp(s), then by repeated squaring
argument, each fbii has poly(s,d0) size circuit

4. there can be at most d0 many factors fi’s!

24
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Logarithmic Derivative

• From Split theorem, we have seen that each irreducible
fi = ∏j(y− gj)

• As deg(fi) ≤ d0, it is enough to bound size of g≤d0j

• g≤d0j has poly(s,d0)-size circuit =⇒

fi ≡ ∏(y− g≤d0j ) mod ⟨x⟩d0+1

has poly(s,d0)-size circuit as deg is bounded by d0
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• Apply τ on f. We will call this f from now on

• We have f = c · ∏
i∈[d0]

(y− gi)ei with gi(0) := µi

• f′
f = ∑

i∈[d0]

ei
y− gi

• 1
y−gi ≡

1
y−g≤k−1i

+
g=ki

(y−µi)2
mod ⟨x⟩k+1

• Rearranging we have

∑
i∈[d0]

ei
(y− µi)2

· g=ki ≡ f′
f − ∑

i∈[d0]

ei
y− g≤k−1i

mod ⟨x⟩k+1
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• Put different y = c1, . . . , cd0 and try to solve for g
=k
i

• Does this work?

Answer : No!

• This is because we can not do mod at each step as this incurs
multiplicative k-blow up at step k

• Can we do without taking mod at each step?

Answer : Yes! We can!
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Self-correcting Behavior

• Suppose we have g̃i,k−1’s such that g̃i,k−1 ≡ g≤k−1i mod ⟨x⟩k

• Try to solve for ∑
i∈[d0]

ei
(y− µi)2

· zi,k ≡
f′
f − ∑

i∈[d0]

ei
y− g̃i,k−1

• Above equation when taken mod, zi,k = g=ki is a solution! Is
there any relation between solution zi,k and g=ki ?

• It can be shown that g̃i,k−1 + zi,k ≡ g≤ki mod ⟨x⟩k+1

• Define g̃i,k−1 + zi,k := g̃i,k

• So the idea is solve each step without the mod and take the
cumulative sum

28
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Size Bound

• We choose y = c1, . . . , cd0 and solve zi,k’s. How does a solution
look like in terms of g̃i,k−1?

• z1,k looks like

z1,k = ∑
j∈[d0]

βj

 f′
f − ∑

i∈[d0]

ei
y− g̃i,k−1

 ∣∣∣∣
y=cj

• Like the previous one, compute zi,k’s and hence g̃i,k’s as circuit
with division gates allowed

• One can show that it has poly(s,d0) size circuit with division

29
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• Push the division gate at the top

• In this case, we can show that after d0 steps, the resulting
division circuit has invertible denominator.

÷

A B

• This is because f evaluated at cj’s are invertible
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• In contrast, in the previous case we had f(yt) as denominator
which would be non-invertible

• So one can eliminate division. Ultimately each gi upto
approximation d0. So, elimination at the end only blows up the
size by multiplicative d20. Altogether, each g

≤d0
i has poly(s,d0)

circuit

• Hence any irreducible factor (hence any factor) has

poly(s,d0)-size circuit
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Some closure results



Arithmetic Formula

1 x1 1 x2 1 xn

+ + · · ·

· · ·

+

×

(1+ x1) . . . (1+ xn)

• Tree
• Leaves containing variables or constants
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Factoring in other models

• Does a polynomial f of degree d which can be computed by a
formula of size s have factors of poly(s,d)-formula size?

• Yet not known! In particular, VF is not known to be closed under

factoring!

• VF contains family of polynomials of n-variate polynomials
computed by nO(1)-sized formulas (similarly for VBP, the
corresponding class for ABP’s)

• (Oliveira’15) Constant degree f(x) of size s computed by a
formula or circuit resp. has factors of size poly(s) in the
respective model
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Closure Results

Quasi-poly sized algebraic classes
{fn}n ∈ VF(nlogn) (resp. VBP(nlogn)) such that n-variate fn can be
computed by an algebraic formula (resp. ABP) of size nO(logn) and
has degree poly(n).

Theorem 2
VF(nlogn) (resp. VBP(nlogn)) is closed under factoring.
Moreover,there exists a randomized poly(nlogn)-time algorithm
that: for a given nO(logn) sized formula (resp. ABP) f of
poly(n)-degree, outputs nO(logn) sized formula (resp. ABP) of a
nontrivial factor of f (if one exists).
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Bounding size of factor of formula

Goal: Given f of formula size nlogn and degree nO(1), show upper
bound on size of its factors

• Suppose (y− g)e || f(τx)

• One can show that if f of degree d has s size formula, then ∂kf
∂yk

has poly(s,d) size formula

• differentiate e− 1 times and use NI

• g≤d will have size nO(logn) formula

• Algorithm is non-trivial, uses idea by kaltofen
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has poly(s,d) size formula

• differentiate e− 1 times and use NI

• g≤d will have size nO(logn) formula

• Algorithm is non-trivial, uses idea by kaltofen
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Closure of VNP

Definition of VNP
A family {fn}n is in VNP if there exist polynomials s(n), t(n) and a
family {gn}n in VP such that for every n,
fn(x) = ∑w∈{0,1}t(n) gn(x,w1, . . . ,wt(n)) where size(gn) ≤ s(n).

What about closure property of VNP under factoring?We define
VNP(nlogn) if we allow s(n) and t(n) to be nO(logn). We showed that:

Theorem 2 continued
VNP(nlogn) is closed under factoring

It was conjectured that VNP is closed under factoring (Bürgisser).
This has been very recently shown to be true by Chou, Kumar and
Solomon. NI technique can also be used to derive the result as well!
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Open Problems



Open Problems

• Prove/Disprove Factor Conjecture

• Can we eliminate division for AB mod ⟨x⟩d when B is
non-invertible? ( one can show that this implies Factor
Conjecture (DSS’18))

• Prove or disprove that VF (resp. VBP) is closed under factoring

THANK YOU!
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