
Isomorphism Problems
and

Minimum Circuit Size

Eric Allender
Joshua Grochow

Cris Moore
Dieter van Melkebeek

Andrew Morgan

WACT Paris, March 6, 2018

Outline

Characters:

(1) Graph Isomorphism and generalizations

(2) Minimum Circuit Size and related problems

Status: NP-intermediate

Result: Reductions from (1) to (2)

Outline

Characters:

(1) Graph Isomorphism and generalizations

(2) Minimum Circuit Size and related problems

Status: NP-intermediate

Result: Reductions from (1) to (2)

Outline

Characters:

(1) Graph Isomorphism and generalizations

(2) Minimum Circuit Size and related problems

Status: NP-intermediate

Result: Reductions from (1) to (2)

Isomorphism Problem

Parameterized by family of actions (Hx ,Ωx) of a finite group Hx

on a universe Ωx (depending on the input x)

Given: ω0, ω1 ∈ Ω
Question: (∃h ∈ H) h(ω0) = ω1 ?

Instantiations:

Isomorphism Problem H Ω

Discrete Log Fp Fp

Graph Isomorphism Sn graphs with n vertices
Linear Code Equivalence Sn subspaces of Fn

q

Permutation Group Conjugacy Sn subgroups of Sn

Matrix Subspace Conjugacy GLn(Fq) subspaces of Fn×n
q

Isomorphism Problem

Parameterized by family of actions (Hx ,Ωx) of a finite group Hx

on a universe Ωx (depending on the input x)

Given: ω0, ω1 ∈ Ω
Question: (∃h ∈ H) h(ω0) = ω1 ?

Instantiations:

Isomorphism Problem H Ω

Discrete Log Fp Fp

Graph Isomorphism Sn graphs with n vertices
Linear Code Equivalence Sn subspaces of Fn

q

Permutation Group Conjugacy Sn subgroups of Sn

Matrix Subspace Conjugacy GLn(Fq) subspaces of Fn×n
q

Isomorphism Problem

Parameterized by family of actions (Hx ,Ωx) of a finite group Hx

on a universe Ωx (depending on the input x)

Given: ω0, ω1 ∈ Ω
Question: (∃h ∈ H) h(ω0) = ω1 ?

Instantiations:

Isomorphism Problem H Ω

Discrete Log Fp Fp

Graph Isomorphism Sn graphs with n vertices
Linear Code Equivalence Sn subspaces of Fn

q

Permutation Group Conjugacy Sn subgroups of Sn

Matrix Subspace Conjugacy GLn(Fq) subspaces of Fn×n
q

Isomorphism Problem

Parameterized by family of actions (Hx ,Ωx) of a finite group Hx

on a universe Ωx (depending on the input x)

Given: ω0, ω1 ∈ Ω
Question: (∃h ∈ H) h(ω0) = ω1 ?

Instantiations:

Isomorphism Problem H Ω

Discrete Log Fp Fp

Graph Isomorphism Sn graphs with n vertices
Linear Code Equivalence Sn subspaces of Fn

q

Permutation Group Conjugacy Sn subgroups of Sn

Matrix Subspace Conjugacy GLn(Fq) subspaces of Fn×n
q

Minimum Circuit Size and Related Problems

CC(x) is the smallest size of circuit with truth-table x .

MCSP = {(x , θ) : CC(x) ≤ θ}

Variants based on various notions of CC.

Fix a universal Turing Machine U.

Given x , consider programs p that, on input i , output xi , i.e.,
U(p, i) = xi .

KT(x) is the smallest value of |p|+ T , where p runs in time T .

KT(x) and CC(x) are polynomially related.

MKTP = {(x , θ) : KT(x) ≤ θ}

Minimum Circuit Size and Related Problems

CC(x) is the smallest size of circuit with truth-table x .

MCSP = {(x , θ) : CC(x) ≤ θ}

Variants based on various notions of CC.

Fix a universal Turing Machine U.

Given x , consider programs p that, on input i , output xi , i.e.,
U(p, i) = xi .

KT(x) is the smallest value of |p|+ T , where p runs in time T .

KT(x) and CC(x) are polynomially related.

MKTP = {(x , θ) : KT(x) ≤ θ}

Minimum Circuit Size and Related Problems

CC(x) is the smallest size of circuit with truth-table x .

MCSP = {(x , θ) : CC(x) ≤ θ}

Variants based on various notions of CC.

Fix a universal Turing Machine U.

Given x , consider programs p that, on input i , output xi , i.e.,
U(p, i) = xi .

KT(x) is the smallest value of |p|+ T , where p runs in time T .

KT(x) and CC(x) are polynomially related.

MKTP = {(x , θ) : KT(x) ≤ θ}

Minimum Circuit Size and Related Problems

CC(x) is the smallest size of circuit with truth-table x .

MCSP = {(x , θ) : CC(x) ≤ θ}

Variants based on various notions of CC.

Fix a universal Turing Machine U.

Given x , consider programs p that, on input i , output xi , i.e.,
U(p, i) = xi .

KT(x) is the smallest value of |p|+ T , where p runs in time T .

KT(x) and CC(x) are polynomially related.

MKTP = {(x , θ) : KT(x) ≤ θ}

Minimum Circuit Size and Related Problems

CC(x) is the smallest size of circuit with truth-table x .

MCSP = {(x , θ) : CC(x) ≤ θ}

Variants based on various notions of CC.

Fix a universal Turing Machine U.

Given x , consider programs p that, on input i , output xi , i.e.,
U(p, i) = xi .

KT(x) is the smallest value of |p|+ T , where p runs in time T .

KT(x) and CC(x) are polynomially related.

MKTP = {(x , θ) : KT(x) ≤ θ}

Minimum Circuit Size and Related Problems

CC(x) is the smallest size of circuit with truth-table x .

MCSP = {(x , θ) : CC(x) ≤ θ}

Variants based on various notions of CC.

Fix a universal Turing Machine U.

Given x , consider programs p that, on input i , output xi , i.e.,
U(p, i) = xi .

KT(x) is the smallest value of |p|+ T , where p runs in time T .

KT(x) and CC(x) are polynomially related.

MKTP = {(x , θ) : KT(x) ≤ θ}

Minimum Circuit Size and Related Problems

CC(x) is the smallest size of circuit with truth-table x .

MCSP = {(x , θ) : CC(x) ≤ θ}

Variants based on various notions of CC.

Fix a universal Turing Machine U.

Given x , consider programs p that, on input i , output xi , i.e.,
U(p, i) = xi .

KT(x) is the smallest value of |p|+ T , where p runs in time T .

KT(x) and CC(x) are polynomially related.

MKTP = {(x , θ) : KT(x) ≤ θ}

Minimum Circuit Size and Related Problems

CC(x) is the smallest size of circuit with truth-table x .

MCSP = {(x , θ) : CC(x) ≤ θ}

Variants based on various notions of CC.

Fix a universal Turing Machine U.

Given x , consider programs p that, on input i , output xi , i.e.,
U(p, i) = xi .

KT(x) is the smallest value of |p|+ T , where p runs in time T .

KT(x) and CC(x) are polynomially related.

MKTP = {(x , θ) : KT(x) ≤ θ}

Breaking Pseudorandom Generators

A pseudorandom generator is an efficient deterministic algorithm
PRG such that PRG(U`) looks like Ur for `� r .

MCSP/MKTP breaks PRGs that fool circuits/efficient programs.

“Hard” problems underlying PRG constructions that fool
circuits/efficient programs reduce to MCSP/MKTP.

Breaking Pseudorandom Generators

A pseudorandom generator is an efficient deterministic algorithm
PRG such that PRG(U`) looks like Ur for `� r .

MCSP/MKTP breaks PRGs that fool circuits/efficient programs.

“Hard” problems underlying PRG constructions that fool
circuits/efficient programs reduce to MCSP/MKTP.

Breaking Pseudorandom Generators

A pseudorandom generator is an efficient deterministic algorithm
PRG such that PRG(U`) looks like Ur for `� r .

MCSP/MKTP breaks PRGs that fool circuits/efficient programs.

“Hard” problems underlying PRG constructions that fool
circuits/efficient programs reduce to MCSP/MKTP.

Breaking Pseudorandom Generators

A pseudorandom generator is an efficient deterministic algorithm
PRG such that PRG(U`) looks like Ur for `� r .

MCSP/MKTP breaks PRGs that fool circuits/efficient programs.

“Hard” problems underlying PRG constructions that fool
circuits/efficient programs reduce to MCSP/MKTP.

Inverting Functions

PRG construction of [Hastad Impagliazzo Levin Luby] based on
one-way functions.

Lemma: There exists a polynomial-time probabilistic Turing
machine M using oracle access to MCSP/MKTP so that the
following holds. For any circuit C of size n, if σ ∼ {0, 1}n and then

Pr[C (τ) = C (σ)] ≥ 1/poly(n) with τ
.

= M(C ,C (σ)).

Apply to C (σ) = σ(G1) where σ ∼ Sn.

If G0 ≡ G1 then σ(G1) ≡ σ(G0), so

Pr[C (τ) = σ(G0)] ≥ 1/poly(n) with τ
.

= M(C , σ(G0)).

C (τ) = σ(G0) means τ−1 ◦ σ is an isomorphism from G0 to G1.

Inverting Functions

PRG construction of [Hastad Impagliazzo Levin Luby] based on
one-way functions.

Lemma: There exists a polynomial-time probabilistic Turing
machine M using oracle access to MCSP/MKTP so that the
following holds. For any circuit C of size n, if σ ∼ {0, 1}n and then

Pr[C (τ) = C (σ)] ≥ 1/poly(n) with τ
.

= M(C ,C (σ)).

Apply to C (σ) = σ(G1) where σ ∼ Sn.

If G0 ≡ G1 then σ(G1) ≡ σ(G0), so

Pr[C (τ) = σ(G0)] ≥ 1/poly(n) with τ
.

= M(C , σ(G0)).

C (τ) = σ(G0) means τ−1 ◦ σ is an isomorphism from G0 to G1.

Inverting Functions

PRG construction of [Hastad Impagliazzo Levin Luby] based on
one-way functions.

Lemma: There exists a polynomial-time probabilistic Turing
machine M using oracle access to MCSP/MKTP so that the
following holds. For any circuit C of size n, if σ ∼ {0, 1}n and then

Pr[C (τ) = C (σ)] ≥ 1/poly(n) with τ
.

= M(C ,C (σ)).

Apply to C (σ) = σ(G1) where σ ∼ Sn.

If G0 ≡ G1 then σ(G1) ≡ σ(G0), so

Pr[C (τ) = σ(G0)] ≥ 1/poly(n) with τ
.

= M(C , σ(G0)).

C (τ) = σ(G0) means τ−1 ◦ σ is an isomorphism from G0 to G1.

Inverting Functions

PRG construction of [Hastad Impagliazzo Levin Luby] based on
one-way functions.

Lemma: There exists a polynomial-time probabilistic Turing
machine M using oracle access to MCSP/MKTP so that the
following holds. For any circuit C of size n, if σ ∼ {0, 1}n and then

Pr[C (τ) = C (σ)] ≥ 1/poly(n) with τ
.

= M(C ,C (σ)).

Apply to C (σ) = σ(G1) where σ ∼ Sn.

If G0 ≡ G1 then σ(G1) ≡ σ(G0), so

Pr[C (τ) = σ(G0)] ≥ 1/poly(n) with τ
.

= M(C , σ(G0)).

C (τ) = σ(G0) means τ−1 ◦ σ is an isomorphism from G0 to G1.

Inverting Functions

PRG construction of [Hastad Impagliazzo Levin Luby] based on
one-way functions.

Lemma: There exists a polynomial-time probabilistic Turing
machine M using oracle access to MCSP/MKTP so that the
following holds. For any circuit C of size n, if σ ∼ {0, 1}n and then

Pr[C (τ) = C (σ)] ≥ 1/poly(n) with τ
.

= M(C ,C (σ)).

Apply to C (σ) = σ(G1) where σ ∼ Sn.

If G0 ≡ G1 then σ(G1) ≡ σ(G0), so

Pr[C (τ) = σ(G0)] ≥ 1/poly(n) with τ
.

= M(C , σ(G0)).

C (τ) = σ(G0) means τ−1 ◦ σ is an isomorphism from G0 to G1.

Inverting Functions

PRG construction of [Hastad Impagliazzo Levin Luby] based on
one-way functions.

Lemma: There exists a polynomial-time probabilistic Turing
machine M using oracle access to MCSP/MKTP so that the
following holds. For any circuit C of size n, if σ ∼ {0, 1}n and then

Pr[C (τ) = C (σ)] ≥ 1/poly(n) with τ
.

= M(C ,C (σ)).

Apply to C (σ) = σ(G1) where σ ∼ Sn.

If G0 ≡ G1 then σ(G1) ≡ σ(G0), so

Pr[C (τ) = σ(G0)] ≥ 1/poly(n) with τ
.

= M(C , σ(G0)).

C (τ) = σ(G0) means τ−1 ◦ σ is an isomorphism from G0 to G1.

Randomized Reductions

Yieds randomized reduction from Graph Isomorphism to
MCSP/MKTP without false positives [Allender Das].

Generalizes to generic Isomorphism Problem under mild conditions.

Question: How to eliminate errors?

Suffices to obtain reductions without false negatives.

Approach: Use MCSP/MKTP to verify witnesses of
nonisomorphism.

Randomized Reductions

Yieds randomized reduction from Graph Isomorphism to
MCSP/MKTP without false positives [Allender Das].

Generalizes to generic Isomorphism Problem under mild conditions.

Question: How to eliminate errors?

Suffices to obtain reductions without false negatives.

Approach: Use MCSP/MKTP to verify witnesses of
nonisomorphism.

Randomized Reductions

Yieds randomized reduction from Graph Isomorphism to
MCSP/MKTP without false positives [Allender Das].

Generalizes to generic Isomorphism Problem under mild conditions.

Question: How to eliminate errors?

Suffices to obtain reductions without false negatives.

Approach: Use MCSP/MKTP to verify witnesses of
nonisomorphism.

Randomized Reductions

Yieds randomized reduction from Graph Isomorphism to
MCSP/MKTP without false positives [Allender Das].

Generalizes to generic Isomorphism Problem under mild conditions.

Question: How to eliminate errors?

Suffices to obtain reductions without false negatives.

Approach: Use MCSP/MKTP to verify witnesses of
nonisomorphism.

Randomized Reductions

Yieds randomized reduction from Graph Isomorphism to
MCSP/MKTP without false positives [Allender Das].

Generalizes to generic Isomorphism Problem under mild conditions.

Question: How to eliminate errors?

Suffices to obtain reductions without false negatives.

Approach: Use MCSP/MKTP to verify witnesses of
nonisomorphism.

Witnessing Rigid Graph Nonisomorphism

Let G0,G1 be rigid graphs, i.e., no non-trivial automorphisms.

Key fact: if G0 ≡ G1, there are only n! distinct graphs among
permutations of G0 and G1; if G0 6≡ G1, there are 2(n!).

Consider sampling r ∼ {0, 1} and π ∼ Sn uniformly, and
outputting the adjacency matrix of π(Gr).

I If G0 ≡ G1, this has entropy s
.

= log n!

I If G0 6≡ G1, this has entropy s + 1

Main idea: Use KT-complexity of a random sample as a proxy for
entropy.

Witnessing Rigid Graph Nonisomorphism

Let G0,G1 be rigid graphs, i.e., no non-trivial automorphisms.

Key fact: if G0 ≡ G1, there are only n! distinct graphs among
permutations of G0 and G1; if G0 6≡ G1, there are 2(n!).

Consider sampling r ∼ {0, 1} and π ∼ Sn uniformly, and
outputting the adjacency matrix of π(Gr).

I If G0 ≡ G1, this has entropy s
.

= log n!

I If G0 6≡ G1, this has entropy s + 1

Main idea: Use KT-complexity of a random sample as a proxy for
entropy.

Witnessing Rigid Graph Nonisomorphism

Let G0,G1 be rigid graphs, i.e., no non-trivial automorphisms.

Key fact: if G0 ≡ G1, there are only n! distinct graphs among
permutations of G0 and G1; if G0 6≡ G1, there are 2(n!).

Consider sampling r ∼ {0, 1} and π ∼ Sn uniformly, and
outputting the adjacency matrix of π(Gr).

I If G0 ≡ G1, this has entropy s
.

= log n!

I If G0 6≡ G1, this has entropy s + 1

Main idea: Use KT-complexity of a random sample as a proxy for
entropy.

Witnessing Rigid Graph Nonisomorphism

Let y = π(Gr), π ∼ Sn, r ∼ {0, 1}.

Hope: KT(y) is typically near the entropy, never much larger:

G0 ≡ G1

G0 6≡ G1

s s + 1θ

where s = log(n!)

Witness nonisomorphism by checking KT(y) > θ.

Witnessing Rigid Graph Nonisomorphism

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt), πi ∼ Sn, ri ∼ {0, 1}.

Reality: KT(y)/y is typically near the entropy, never much larger:

G0 ≡ G1

G0 6≡ G1

s s + 1θ

where s = log(n!)

Witness nonisomorphism by checking KT(y)/t > θ.

Isomorphic Case

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt).

Since G0 ≡ G1 can can describe y by:

I Adjacency matrix of G0: n2 bits.

I For each i ∈ [t], a permutation τt ∈ Sn such that
τi (G0) = πi (Gri).

Lehmer Code. There is an indexing of Sn by the numbers
1, . . . , n! so that the i-th permutation can be decoded from the
binary representation of i in time poly(n).

Yields KT(y) ≤ n2 + t · dse+ poly(n, log t).

Lemma: KT(y) ≤ ts + t1−αpoly(n) for some constant α > 0.

Implies that KT(y)/t ≤ s + o(1) for sufficiently large t = poly(n).

Isomorphic Case

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt).

Since G0 ≡ G1 can can describe y by:

I Adjacency matrix of G0: n2 bits.

I For each i ∈ [t], a permutation τt ∈ Sn such that
τi (G0) = πi (Gri).

Lehmer Code. There is an indexing of Sn by the numbers
1, . . . , n! so that the i-th permutation can be decoded from the
binary representation of i in time poly(n).

Yields KT(y) ≤ n2 + t · dse+ poly(n, log t).

Lemma: KT(y) ≤ ts + t1−αpoly(n) for some constant α > 0.

Implies that KT(y)/t ≤ s + o(1) for sufficiently large t = poly(n).

Isomorphic Case

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt).

Since G0 ≡ G1 can can describe y by:

I Adjacency matrix of G0: n2 bits.

I For each i ∈ [t], a permutation τt ∈ Sn such that
τi (G0) = πi (Gri).

Lehmer Code. There is an indexing of Sn by the numbers
1, . . . , n! so that the i-th permutation can be decoded from the
binary representation of i in time poly(n).

Yields KT(y) ≤ n2 + t · dse+ poly(n, log t).

Lemma: KT(y) ≤ ts + t1−αpoly(n) for some constant α > 0.

Implies that KT(y)/t ≤ s + o(1) for sufficiently large t = poly(n).

Isomorphic Case

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt).

Since G0 ≡ G1 can can describe y by:

I Adjacency matrix of G0: n2 bits.

I For each i ∈ [t], a permutation τt ∈ Sn such that
τi (G0) = πi (Gri).

Lehmer Code. There is an indexing of Sn by the numbers
1, . . . , n! so that the i-th permutation can be decoded from the
binary representation of i in time poly(n).

Yields KT(y) ≤ n2 + t · dse+ poly(n, log t).

Lemma: KT(y) ≤ ts + t1−αpoly(n) for some constant α > 0.

Implies that KT(y)/t ≤ s + o(1) for sufficiently large t = poly(n).

Isomorphic Case

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt).

Since G0 ≡ G1 can can describe y by:

I Adjacency matrix of G0: n2 bits.

I For each i ∈ [t], a permutation τt ∈ Sn such that
τi (G0) = πi (Gri).

Lehmer Code. There is an indexing of Sn by the numbers
1, . . . , n! so that the i-th permutation can be decoded from the
binary representation of i in time poly(n).

Yields KT(y) ≤ n2 + t · dse+ poly(n, log t).

Lemma: KT(y) ≤ ts + t1−αpoly(n) for some constant α > 0.

Implies that KT(y)/t ≤ s + o(1) for sufficiently large t = poly(n).

Isomorphic Case

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt).

Since G0 ≡ G1 can can describe y by:

I Adjacency matrix of G0: n2 bits.

I For each i ∈ [t], a permutation τt ∈ Sn such that
τi (G0) = πi (Gri).

Lehmer Code. There is an indexing of Sn by the numbers
1, . . . , n! so that the i-th permutation can be decoded from the
binary representation of i in time poly(n).

Yields KT(y) ≤ n2 + t · dse+ poly(n, log t).

Lemma: KT(y) ≤ ts + t1−αpoly(n) for some constant α > 0.

Implies that KT(y)/t ≤ s + o(1) for sufficiently large t = poly(n).

Entropy Estimator

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt).

If G0 ≡ G1 then KT(y)/t ≤ s + o(1) always holds for sufficiently
large t = poly(n).

As y consists of t independent samples from a flat distribution of
entropy s, KT(y)/t ≥ s − o(1) holds with high probability.

Corollary: KT (y)/t is a probably approximately correct (PAC)
underestimator for the entropy.

Entropy Estimator

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt).

If G0 ≡ G1 then KT(y)/t ≤ s + o(1) always holds for sufficiently
large t = poly(n).

As y consists of t independent samples from a flat distribution of
entropy s, KT(y)/t ≥ s − o(1) holds with high probability.

Corollary: KT (y)/t is a probably approximately correct (PAC)
underestimator for the entropy.

Entropy Estimator

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt).

If G0 ≡ G1 then KT(y)/t ≤ s + o(1) always holds for sufficiently
large t = poly(n).

As y consists of t independent samples from a flat distribution of
entropy s, KT(y)/t ≥ s − o(1) holds with high probability.

Corollary: KT (y)/t is a probably approximately correct (PAC)
underestimator for the entropy.

Entropy Estimator

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt).

If G0 ≡ G1 then KT(y)/t ≤ s + o(1) always holds for sufficiently
large t = poly(n).

As y consists of t independent samples from a flat distribution of
entropy s, KT(y)/t ≥ s − o(1) holds with high probability.

Corollary: KT (y)/t is a probably approximately correct (PAC)
underestimator for the entropy.

Entropy Estimator

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt).

If G0 ≡ G1 then KT(y)/t ≤ s + o(1) always holds for sufficiently
large t = poly(n).

As y consists of t independent samples from a flat distribution of
entropy s, KT(y)/t ≥ s − o(1) holds with high probability.

Corollary: KT (y)/t is a probably approximately correct (PAC)
underestimator for the entropy.

Witnessing Graph Nonisomorphism

Let y = π1(Gr1)π2(Gr2) · · ·πt(Grt), πi ∼ Sn, ri ∼ {0, 1}.

Reality: KT(y)/y is typically near the entropy, never much larger:

G0 ≡ G1

G0 6≡ G1

s s + 1θ

where s = log(n!/|Aut(Gi)|) (assumed the same for i ∈ {0, 1} for
ease of exposition).

Witness nonisomorphism by checking KT(y)/t > θ.

Witnessing Graph Nonisomorphism

Two complications for non-rigid graphs:

I Encoding distinct permutations of G0 as numbers 1, . . . , n! is
too expensive.

I Knowing threshold θ = s + 1/2 requires knowing |Aut(Gi)|.

Using entropy estimator yields randomized reduction with
two-sided error (from which false positives can be eliminated using
known search-to-decision for Graph Isomorphism).

Witnessing Graph Nonisomorphism

Two complications for non-rigid graphs:

I Encoding distinct permutations of G0 as numbers 1, . . . , n! is
too expensive.

I Knowing threshold θ = s + 1/2 requires knowing |Aut(Gi)|.

Using entropy estimator yields randomized reduction with
two-sided error (from which false positives can be eliminated using
known search-to-decision for Graph Isomorphism).

Witnessing Graph Nonisomorphism

Two complications for non-rigid graphs:

I Encoding distinct permutations of G0 as numbers 1, . . . , n! is
too expensive.

I Knowing threshold θ = s + 1/2 requires knowing |Aut(Gi)|.

Using entropy estimator yields randomized reduction with
two-sided error (from which false positives can be eliminated using
known search-to-decision for Graph Isomorphism).

Witnessing Graph Nonisomorphism

Two complications for non-rigid graphs:

I Encoding distinct permutations of G0 as numbers 1, . . . , n! is
too expensive.

I Knowing threshold θ = s + 1/2 requires knowing |Aut(Gi)|.

Using entropy estimator yields randomized reduction with
two-sided error (from which false positives can be eliminated using
known search-to-decision for Graph Isomorphism).

Witnessing Graph Nonisomorphism

It suffices to give a probably approximately correct (PAC)
overestimator for θ:

θ̃

KT (y)/t,G0 ≡ G1

KT (y)/t,G0 6≡ G1

s s + 1θ

Equivalently, it suffices to give a PAC underestimator for
log |Aut(Gi)|, since θ = log(n!)− log |Aut(Gi)|.

Witnessing Graph Nonisomorphism

It suffices to give a probably approximately correct (PAC)
overestimator for θ:

θ̃

KT (y)/t,G0 ≡ G1

KT (y)/t,G0 6≡ G1

s s + 1θ

Equivalently, it suffices to give a PAC underestimator for
log |Aut(Gi)|, since θ = log(n!)− log |Aut(Gi)|.

PAC Underestimating log |Aut(G)|

Claim. There is an efficient randomized algorithm using MKTP to
PAC underestimate log |Aut(G)| when given G .

Proof. Recall that there is an efficient deterministic algorithm
using an oracle for Graph Isomorphism that computes generators
for Aut(G).

Plug in an existing RPMKTP algorithm for the oracle. This gives us
generators for a subgroup A ≤ Aut(G) such that A = Aut(G) with
high probability.

|A| can be computed efficiently from its generators. Output log |A|.

Theorem: Graph Isomorphism is in ZPPMKTP.

PAC Underestimating log |Aut(G)|

Claim. There is an efficient randomized algorithm using MKTP to
PAC underestimate log |Aut(G)| when given G .

Proof. Recall that there is an efficient deterministic algorithm
using an oracle for Graph Isomorphism that computes generators
for Aut(G).

Plug in an existing RPMKTP algorithm for the oracle. This gives us
generators for a subgroup A ≤ Aut(G) such that A = Aut(G) with
high probability.

|A| can be computed efficiently from its generators. Output log |A|.

Theorem: Graph Isomorphism is in ZPPMKTP.

PAC Underestimating log |Aut(G)|

Claim. There is an efficient randomized algorithm using MKTP to
PAC underestimate log |Aut(G)| when given G .

Proof. Recall that there is an efficient deterministic algorithm
using an oracle for Graph Isomorphism that computes generators
for Aut(G).

Plug in an existing RPMKTP algorithm for the oracle. This gives us
generators for a subgroup A ≤ Aut(G) such that A = Aut(G) with
high probability.

|A| can be computed efficiently from its generators. Output log |A|.

Theorem: Graph Isomorphism is in ZPPMKTP.

Generalization

Isomorphism Problem with underlying action (H,Ω):

Given: ω0, ω1 ∈ Ω
Question: (∃h ∈ H) h(ω0) = ω1 ?

h(ω) for h ∼ H yields a flat distribution of entropy
s = log(|H|/|Aut(ω)|) where Aut(ω)

.
= {h ∈ H : h(ω) = ω)}.

Use y = h1(ωr1) · · · ht(Grt) where hi ∼ H and ri ∼ {0, 1}.

Need:

I Encoding of the cosets of Aut(ω) that achieves
KT-complexity close to the entropy s.

I Efficiently compute |H|.
I PAC underestimator for |Aut(ω)| that is efficiently computable

with access to MKTP.

Generalization

Isomorphism Problem with underlying action (H,Ω):

Given: ω0, ω1 ∈ Ω
Question: (∃h ∈ H) h(ω0) = ω1 ?

h(ω) for h ∼ H yields a flat distribution of entropy
s = log(|H|/|Aut(ω)|) where Aut(ω)

.
= {h ∈ H : h(ω) = ω)}.

Use y = h1(ωr1) · · · ht(Grt) where hi ∼ H and ri ∼ {0, 1}.

Need:

I Encoding of the cosets of Aut(ω) that achieves
KT-complexity close to the entropy s.

I Efficiently compute |H|.
I PAC underestimator for |Aut(ω)| that is efficiently computable

with access to MKTP.

Generalization

Isomorphism Problem with underlying action (H,Ω):

Given: ω0, ω1 ∈ Ω
Question: (∃h ∈ H) h(ω0) = ω1 ?

h(ω) for h ∼ H yields a flat distribution of entropy
s = log(|H|/|Aut(ω)|) where Aut(ω)

.
= {h ∈ H : h(ω) = ω)}.

Use y = h1(ωr1) · · · ht(Grt) where hi ∼ H and ri ∼ {0, 1}.

Need:

I Encoding of the cosets of Aut(ω) that achieves
KT-complexity close to the entropy s.

I Efficiently compute |H|.
I PAC underestimator for |Aut(ω)| that is efficiently computable

with access to MKTP.

Generalization

Isomorphism Problem with underlying action (H,Ω):

Given: ω0, ω1 ∈ Ω
Question: (∃h ∈ H) h(ω0) = ω1 ?

h(ω) for h ∼ H yields a flat distribution of entropy
s = log(|H|/|Aut(ω)|) where Aut(ω)

.
= {h ∈ H : h(ω) = ω)}.

Use y = h1(ωr1) · · · ht(Grt) where hi ∼ H and ri ∼ {0, 1}.

Need:

I Encoding of the cosets of Aut(ω) that achieves
KT-complexity close to the entropy s.

I Efficiently compute |H|.
I PAC underestimator for |Aut(ω)| that is efficiently computable

with access to MKTP.

Generalization

Isomorphism Problem with underlying action (H,Ω):

Given: ω0, ω1 ∈ Ω
Question: (∃h ∈ H) h(ω0) = ω1 ?

h(ω) for h ∼ H yields a flat distribution of entropy
s = log(|H|/|Aut(ω)|) where Aut(ω)

.
= {h ∈ H : h(ω) = ω)}.

Use y = h1(ωr1) · · · ht(Grt) where hi ∼ H and ri ∼ {0, 1}.

Need:

I Encoding of the cosets of Aut(ω) that achieves
KT-complexity close to the entropy s.

I Efficiently compute |H|.
I PAC underestimator for |Aut(ω)| that is efficiently computable

with access to MKTP.

Encoding Flat Samplable Distributions

Encoding Lemma: Let C be a circuit sampling a distribution of
max-entropy s. There is a circuit D of size poly(|C |) and, for each
outcome z , a string iz of length s + log s + O(1) s. t. D(iz) = z .

Proof based on hashing with linear-algebraic family.

Example: C computes a random permutation of a graph G on n
vertices. Each permutation of G can be decoded from a string of
length s + log s + O(1), where s = log(n!/|Aut(G)|).

Worse than dse but suffices to show KT(y)/t ≤ s + o(1) for
sufficiently large polynomial t.

Corollary: If y is the concatenation of t independent samples from
a samplable distribution p then for any sufficiently large polynomial
t, KT(y)/t is a PAC underestimator for the entropy of p with
deviation ∆ + o(1) where ∆ = max-entropy - min-entropy of p.

Encoding Flat Samplable Distributions

Encoding Lemma: Let C be a circuit sampling a distribution of
max-entropy s. There is a circuit D of size poly(|C |) and, for each
outcome z , a string iz of length s + log s + O(1) s. t. D(iz) = z .

Proof based on hashing with linear-algebraic family.

Example: C computes a random permutation of a graph G on n
vertices. Each permutation of G can be decoded from a string of
length s + log s + O(1), where s = log(n!/|Aut(G)|).

Worse than dse but suffices to show KT(y)/t ≤ s + o(1) for
sufficiently large polynomial t.

Corollary: If y is the concatenation of t independent samples from
a samplable distribution p then for any sufficiently large polynomial
t, KT(y)/t is a PAC underestimator for the entropy of p with
deviation ∆ + o(1) where ∆ = max-entropy - min-entropy of p.

Encoding Flat Samplable Distributions

Encoding Lemma: Let C be a circuit sampling a distribution of
max-entropy s. There is a circuit D of size poly(|C |) and, for each
outcome z , a string iz of length s + log s + O(1) s. t. D(iz) = z .

Proof based on hashing with linear-algebraic family.

Example: C computes a random permutation of a graph G on n
vertices. Each permutation of G can be decoded from a string of
length s + log s + O(1), where s = log(n!/|Aut(G)|).

Worse than dse but suffices to show KT(y)/t ≤ s + o(1) for
sufficiently large polynomial t.

Corollary: If y is the concatenation of t independent samples from
a samplable distribution p then for any sufficiently large polynomial
t, KT(y)/t is a PAC underestimator for the entropy of p with
deviation ∆ + o(1) where ∆ = max-entropy - min-entropy of p.

Encoding Flat Samplable Distributions

Encoding Lemma: Let C be a circuit sampling a distribution of
max-entropy s. There is a circuit D of size poly(|C |) and, for each
outcome z , a string iz of length s + log s + O(1) s. t. D(iz) = z .

Proof based on hashing with linear-algebraic family.

Example: C computes a random permutation of a graph G on n
vertices. Each permutation of G can be decoded from a string of
length s + log s + O(1), where s = log(n!/|Aut(G)|).

Worse than dse but suffices to show KT(y)/t ≤ s + o(1) for
sufficiently large polynomial t.

Corollary: If y is the concatenation of t independent samples from
a samplable distribution p then for any sufficiently large polynomial
t, KT(y)/t is a PAC underestimator for the entropy of p with
deviation ∆ + o(1) where ∆ = max-entropy - min-entropy of p.

Encoding Flat Samplable Distributions

Encoding Lemma: Let C be a circuit sampling a distribution of
max-entropy s. There is a circuit D of size poly(|C |) and, for each
outcome z , a string iz of length s + log s + O(1) s. t. D(iz) = z .

Proof based on hashing with linear-algebraic family.

Example: C computes a random permutation of a graph G on n
vertices. Each permutation of G can be decoded from a string of
length s + log s + O(1), where s = log(n!/|Aut(G)|).

Worse than dse but suffices to show KT(y)/t ≤ s + o(1) for
sufficiently large polynomial t.

Corollary: If y is the concatenation of t independent samples from
a samplable distribution p then for any sufficiently large polynomial
t, KT(y)/t is a PAC underestimator for the entropy of p with
deviation ∆ + o(1) where ∆ = max-entropy - min-entropy of p.

Encoding Flat Samplable Distributions

Encoding Lemma: Let C be a circuit sampling a distribution of
max-entropy s. There is a circuit D of size poly(|C |) and, for each
outcome z , a string iz of length s + log s + O(1) s. t. D(iz) = z .

Proof based on hashing with linear-algebraic family.

Example: C computes a random permutation of a graph G on n
vertices. Each permutation of G can be decoded from a string of
length s + log s + O(1), where s = log(n!/|Aut(G)|).

Worse than dse but suffices to show KT(y)/t ≤ s + o(1) for
sufficiently large polynomial t.

Corollary: If y is the concatenation of t independent samples from
a samplable distribution p then for any sufficiently large polynomial
t, KT(y)/t is a PAC underestimator for the entropy of p with
deviation ∆ + o(1) where ∆ = max-entropy - min-entropy of p.

PAC Underestimating log |Aut(ω)|

Approach: Efficient procedures with access to MKTP to compute:

(a) A list L of elements of H that generates a subgroup 〈L〉 of
Aut(ω) such that 〈L〉 = Aut(ω) with high probability.

(b) A PAC underestimator for log |〈L〉|.

PAC Underestimating log |Aut(ω)|

Approach: Efficient procedures with access to MKTP to compute:

(a) A list L of elements of H that generates a subgroup 〈L〉 of
Aut(ω) such that 〈L〉 = Aut(ω) with high probability.

(b) A PAC underestimator for log |〈L〉|.

PAC Underestimating log |Aut(ω)|

Approach: Efficient procedures with access to MKTP to compute:

(a) A list L of elements of H that generates a subgroup 〈L〉 of
Aut(ω) such that 〈L〉 = Aut(ω) with high probability.

(b) A PAC underestimator for log |〈L〉|.

Finding Generators for Aut(ω)

Use the power of MKTP to invert circuits on average.

Let C be a circuit that samples a random h and outputs h(ω).

Consider sampling h′ uniformly from H, and running M(C , h′(ω))

On success, we get h so that h(ω) = h′(ω), i.e., h−1h′ ∈ Aut(ω)

In fact, conditioned on M’s success, h−1h′ is uniform on Aut(ω)

Only polynomially-many trials are needed to obtain a full set of
generators with high probability.

Finding Generators for Aut(ω)

Use the power of MKTP to invert circuits on average.

Let C be a circuit that samples a random h and outputs h(ω).

Consider sampling h′ uniformly from H, and running M(C , h′(ω))

On success, we get h so that h(ω) = h′(ω), i.e., h−1h′ ∈ Aut(ω)

In fact, conditioned on M’s success, h−1h′ is uniform on Aut(ω)

Only polynomially-many trials are needed to obtain a full set of
generators with high probability.

Finding Generators for Aut(ω)

Use the power of MKTP to invert circuits on average.

Let C be a circuit that samples a random h and outputs h(ω).

Consider sampling h′ uniformly from H, and running M(C , h′(ω))

On success, we get h so that h(ω) = h′(ω), i.e., h−1h′ ∈ Aut(ω)

In fact, conditioned on M’s success, h−1h′ is uniform on Aut(ω)

Only polynomially-many trials are needed to obtain a full set of
generators with high probability.

Finding Generators for Aut(ω)

Use the power of MKTP to invert circuits on average.

Let C be a circuit that samples a random h and outputs h(ω).

Consider sampling h′ uniformly from H, and running M(C , h′(ω))

On success, we get h so that h(ω) = h′(ω), i.e., h−1h′ ∈ Aut(ω)

In fact, conditioned on M’s success, h−1h′ is uniform on Aut(ω)

Only polynomially-many trials are needed to obtain a full set of
generators with high probability.

PAC Undestimating log |〈L〉|

By the Entropy Estimator Corollary, it suffices to show how to
sample almost uniformly from 〈L〉 using a small circuit without
access to MKTP.

A sequence h1, h2, . . . , hk of elements of a finite group Γ is said to
be Erdős–Rényi if the random subproduct

hr1
1 hr2

2 · · · h
rk
k , ri ∼ {0, 1}

is distributed uniformly on Γ.

[Erdős Rényi] showed that every finite group has such a generating
set of size poly(log |Γ|), and [Babai] gave an efficient randomize
algorithm to find one with overwhelming probability. This gives the
required circuit.

PAC Undestimating log |〈L〉|

By the Entropy Estimator Corollary, it suffices to show how to
sample almost uniformly from 〈L〉 using a small circuit without
access to MKTP.

A sequence h1, h2, . . . , hk of elements of a finite group Γ is said to
be Erdős–Rényi if the random subproduct

hr1
1 hr2

2 · · · h
rk
k , ri ∼ {0, 1}

is distributed uniformly on Γ.

[Erdős Rényi] showed that every finite group has such a generating
set of size poly(log |Γ|), and [Babai] gave an efficient randomize
algorithm to find one with overwhelming probability. This gives the
required circuit.

PAC Undestimating log |〈L〉|

By the Entropy Estimator Corollary, it suffices to show how to
sample almost uniformly from 〈L〉 using a small circuit without
access to MKTP.

A sequence h1, h2, . . . , hk of elements of a finite group Γ is said to
be Erdős–Rényi if the random subproduct

hr1
1 hr2

2 · · · h
rk
k , ri ∼ {0, 1}

is distributed uniformly on Γ.

[Erdős Rényi] showed that every finite group has such a generating
set of size poly(log |Γ|), and [Babai] gave an efficient randomize
algorithm to find one with overwhelming probability. This gives the
required circuit.

PAC Undestimating log |〈L〉|

By the Entropy Estimator Corollary, it suffices to show how to
sample almost uniformly from 〈L〉 using a small circuit without
access to MKTP.

A sequence h1, h2, . . . , hk of elements of a finite group Γ is said to
be Erdős–Rényi if the random subproduct

hr1
1 hr2

2 · · · h
rk
k , ri ∼ {0, 1}

is distributed uniformly on Γ.

[Erdős Rényi] showed that every finite group has such a generating
set of size poly(log |Γ|), and [Babai] gave an efficient randomize
algorithm to find one with overwhelming probability. This gives the
required circuit.

Generic Result

Theorem. Let Iso be an Isomorphism Problem satisfying the
following conditions:

I The action (h, ω) 7→ h(ω), products and inverses in H, and |H| can
be computed efficiently.

I The uniform distribution on H can be sampled efficiently.

I There is an efficiently computable complete invariant for H.

I There is an efficiently computable complete invariant for Ω.

Then Iso ∈ ZPPMKTP.

Generic Result

Theorem. Let Iso be an Isomorphism Problem satisfying the
following conditions:

I The action (h, ω) 7→ h(ω), products and inverses in H, and |H| can
be computed efficiently.

I The uniform distribution on H can be sampled efficiently.

I There is an efficiently computable complete invariant for H.

I There is an efficiently computable complete invariant for Ω.

Then Iso ∈ ZPPMKTP.

Summary

Under mild conditions any Isomorphism problems reduces to
MKTP under randomized reductions with zero-sided error.

The conditions are met for Discrete Log, Graph Isomorphism,
Linear Code Equivalence, Permutation Group Conjugacy, and
Matrix Subspace Conjugacy.

Open problems:

I Replace MKTP by MCSP.

I Replace Isomorphism Problem by Statistical Zero Knowledge
(SZK).

Questions?

Thanks!

Summary

Under mild conditions any Isomorphism problems reduces to
MKTP under randomized reductions with zero-sided error.

The conditions are met for Discrete Log, Graph Isomorphism,
Linear Code Equivalence, Permutation Group Conjugacy, and
Matrix Subspace Conjugacy.

Open problems:

I Replace MKTP by MCSP.

I Replace Isomorphism Problem by Statistical Zero Knowledge
(SZK).

Questions?

Thanks!

Summary

Under mild conditions any Isomorphism problems reduces to
MKTP under randomized reductions with zero-sided error.

The conditions are met for Discrete Log, Graph Isomorphism,
Linear Code Equivalence, Permutation Group Conjugacy, and
Matrix Subspace Conjugacy.

Open problems:

I Replace MKTP by MCSP.

I Replace Isomorphism Problem by Statistical Zero Knowledge
(SZK).

Questions?

Thanks!

Summary

Under mild conditions any Isomorphism problems reduces to
MKTP under randomized reductions with zero-sided error.

The conditions are met for Discrete Log, Graph Isomorphism,
Linear Code Equivalence, Permutation Group Conjugacy, and
Matrix Subspace Conjugacy.

Open problems:

I Replace MKTP by MCSP.

I Replace Isomorphism Problem by Statistical Zero Knowledge
(SZK).

Questions?

Thanks!

Summary

Under mild conditions any Isomorphism problems reduces to
MKTP under randomized reductions with zero-sided error.

The conditions are met for Discrete Log, Graph Isomorphism,
Linear Code Equivalence, Permutation Group Conjugacy, and
Matrix Subspace Conjugacy.

Open problems:

I Replace MKTP by MCSP.

I Replace Isomorphism Problem by Statistical Zero Knowledge
(SZK).

Questions?

Thanks!

Summary

Under mild conditions any Isomorphism problems reduces to
MKTP under randomized reductions with zero-sided error.

The conditions are met for Discrete Log, Graph Isomorphism,
Linear Code Equivalence, Permutation Group Conjugacy, and
Matrix Subspace Conjugacy.

Open problems:

I Replace MKTP by MCSP.

I Replace Isomorphism Problem by Statistical Zero Knowledge
(SZK).

Questions?

Thanks!

